

Assessing Aerosol Data Assimilation Products Using DIAL/HSRL Measurements

Richard Ferrare¹, John Hair¹, Sharon Burton¹, Anthony Notari¹ Chris Hostetler¹, Syed Ismail¹, Amin Nehrir¹, Carolyn Butler², James Collins², Marta Fenn², Amy Jo Scarino², Cynthia Randles³, Pete Colarco³, Arlindo daSilva³, James Campbell⁴, Angela Benedetti⁵, Samuel Remy⁶

¹NASA Langley Research Center, Hampton, VA USA

²SSAI, Hampton, VA USA

³NASA Goddard Space Flight Center, Greenbelt, MD USA

⁴U.S. Naval Research Laboratory, Monterey, CA USA

⁵ECMWF, Shinfield Park, Reading Berkshire, UK

⁶Laboratoire de Météorologie Dynamique, Paris, France

Motivation and Objective

- Operational weather forecast centers (e.g. NRL, ECWMF, NCEP, etc.) are developing and testing schemes for assimilating MODIS and CALIOP data into forecast models
- Model evaluations have relied on AERONET AOT; however, correctly forecasting AOT does not necessarily imply correctly forecasting aerosol composition and/or vertical distribution which are important for applications such as air quality
- Evaluating model results that assimilate CALIOP data require independent, accurate lidar measurements
- Objective: Use DIAL/HSRL aerosol measurements to assess and hopefully improve aerosol data assimilation systems

Airborne Ozone DIAL/HSRL System

- Ozone Differential Absorption Lidar (DIAL)
- Aerosol/cloud High Spectral Resolution Lidar (HSRL)
- Simultaneous Nadir and Zenith Measurements
- Resolutions:
 - Extinction: 1 min (~12 km), 270 m
 - Backscatter/Depol: 10 sec (~2 km), 30 m

Profile Measurements:

- Ozone
- Aerosol Extinction (532nm)
- Layer AOT, AOT at 532nm (from aircraft altitude)
- Aerosol/Cloud Backscatter (532,1064nm)
- Backscatter Color Ratio (1064/532nm)
- Lidar Ratio (extinction/backscatter) (532nm)
- Aerosol/Cloud Depolarization (532,1064nm)
- Spectral Depolarization Ratio (1064/532nm)
- Mixed Layer Heights
- Aerosol Classification

Preliminary DIAL/HSRL Comparisons with ECMWF/MACC-III During SEAC4RS

ECMWF/MACC-III Model

- Monitoring Atmospheric Composition and Climate-Interim Implementation (MACC-III) Model
 - Provides information regarding air quality, global atmospheric composition, climate forcing, solar energy
 - Consumers include WMO, EPA and European Centers, weather services, solar irradiance forecast groups, field campaigns
- Aerosol model has components for dust, sea salt, organic matter, black carbon, sulfate
- Eleven prognostic aerosol variables and one for SO₂
- Aerosol sources taken from
 - Global Fire Assimilation System (GFAS) (Kaiser et al., Biogeosciences, 2012)
 - Sea salt and dust emissions computed online in aerosol model using met parameters
 - BC, SO₂, OM Emission Database for Global Atmospheric Research (EDGAR)
- Resolution
 - Horizontal: T255 (~80 km)
 - Vertical: 60 layers
- Aerosol Data Assimilation
 - Terra/Aqua MODIS AOT
 - Working towards assimilation of CALIOP aerosol profiles
- MACC-III 3-hourly results from a series of experiments are examined here
- > SEAC4RS DIAL/HSRL data used to examine impacts of:
 - Assimilation of CALIOP data
 - Increased model resolution
 - Plume rise model impact on smoke injection heights

Evaluating the impacts of MODIS AOT assimilation

- Aug. 19 case had extensive smoke layers from CA, OR, ID fires
- Aug. 27 had Rim Fire smoke
- Assimilation of MODIS AOT reduces aerosol extinction profiles in some sections of these flights
- Reductions in aerosol extinction vary with altitude

Evaluating the impacts of CALIOP profile assimilation

- Assimilation of CALIOP profiles slightly reduces extinction profiles in some locations; largest extinction values remain near surface
 - Depending on location, these reductions can improve or worsen agreement with HSRL

Comparison of Median Profiles with and without CALIOP assimilation

Extinction (km⁻¹)

0.01

MODIS and CALIOP assimilation

- Median profiles and histograms for entire mission
- Median profiles in good agreement with MODIS AOT assimilation

Adding CALIOP:

- produces relatively minor effects on median profiles
- tends to lower the AOT with respect to runs that assimilate only MODIS AOT – slightly better agreement with HSRL

Evaluating the impacts of smoke injection heights computed from plume rise model

- Injection heights for smoke emissions are estimated using Plume rise model (Paugam et al., 2015, in preparation, based on Freitas et al., 2007)
- This plume rise model uses MODIS FRP and modelled atmospheric profiles with a shallow convection scheme to represent detrainment from fire plume
- Initial comparisons show that both aerosol extinction and AOT increase throughout the profile, not necessarily at smoke height shown in DIAL/HSRL profile

Evaluating the impact of higher model resolution

- Model resolution increased from T255 (80 km) with 60 vertical levels to T1279 (16 km) with 137 vertical levels
- Higher resolution represents smoke altitude better than assimilating MODIS AOT or using plume rise model

DIAL/HSRL Comparisons with GEOS-5 During SEAC4RS

GEOS-5 Atmospheric Data Assimilation System

NASA

- GEOS-5 Earth Modeling System, GOCART aerosol module
- Five non-interactive species dust, sea salt, BC, OC, sulfate
- Convective and large scale wet removal
- Dry deposition and sedimentation
- Optics based on OPAC model (Nonspherical Dust) from Colarco; Kim
- Fire emissions Quick Fire Emission Dataset (QFED)
 - Based on MODIS Fire Radiative Power
 - Emission factors tuned using MODIS AOT
 - Daily mean emissions
- Aerosol Data Assimilation
 - Terra/Aqua MODIS AOT
 - MISR AOT over bright surfaces
- Resolution
 - Horizontal: 25 km
 - Vertical: 72 layers

dust	wind and topographic source, 5 mass bins
sea salt	wind driven source, 5 mass bins
black carbon	anthropogenic and wildfire source, mass hydrophic and hydrophilic
organic carbon	anthropogenic, biogenic, and wildfire source, mass hydrophic and hydrophilic
sulfate	anthropogenic and wildfire source of SO2, oxidation to SO4 mass

- PBL heights defined when diffusion coefficient falls below threshold
- GEOS-5 3-hourly results from SEAC4RS reanalysis are examined here

SEAC4RS Aug. 19, 2013 DIAL/HSRL Smoke flight over Midwest

DIAL/HSRL and GEOS-5 Median Backscatter and Extinction Profiles During SEAC4RS

GEOS-5 shows slightly higher backscatter and extinction in free troposphere

DIAL/HSRL and GEOS-5 Median Intensive Parameter Profiles During SEAC4RS

- Both DIAL/HSRL and GEOS-5 intensive parameters vary with altitude suggesting aerosol type varies with altitude
- Backscatter Angstrom exponent increasing with altitude suggests decreasing particle size with height
- GOES-5 lidar ratio higher than DIAL/HSRL
- DIAL/HSRL measured more nonspherical particles (i.e. dust) near the surface than represented by GEOS-5

Comparison of Boundary Layer Heights from HSRL-2 and GEOS-5 during SEAC4RS

- DIAL/HSRL boundary layer heights from aerosol backscatter gradients
- GEOS-5 boundary layer heights from thermal diffusivity <u>and</u> aerosol backscatter gradients were about 500-600 m higher than those derived from HSRL-2 and DIAL/HSRL

Summary

- > HSRL measurements of aerosol <u>extensive</u> and <u>intensive</u> parameters provide additional constraints for developing and assessing models
- Median ECMWF/MACC-II model extinction profile in agreement with median DIAL/HSRL profile
- Increased model resolution improves agreement with DIAL/HSRL profiles
- Initial comparisons with DIAL/HSRL show MACC-III assimilation of CALIOP profiles has relatively minor impacts on comparisons with DIAL/HSRL
- On average, GEOS-5 profiles of aerosol extinction and backscatter are in good agreement with HSRL measurements
- GEOS-5 simulations of aerosol depolarization are biased low model misses local dust
- Both GEOS-5 and airborne HSRL data show aerosol intensive properties vary with altitude during SEAC4RS – likely due to smoke aloft
- GEOS-5 boundary layer heights are biased 500 m high relative to heights derived from airborne lidar data

Current/Future Work and Future Measurements

- Compare HSRL measurements with NAAPS Model
- Evaluate model representations of aerosol type
- Investigate impacts of model representations of dust and smoke particle shape on HSRL measurements of intensive properties
- Investigate use of HSRL-2 retrievals of aerosol properties (e.g. effective radius, concentration) for model evaluation
- Extend comparisons using airborne HSRL data acquired in future NASA missions

Extra Slides

DIAL/HSRL AOT comparison with AERONET

- AOT derived from DIAL/HSRL nadir data when DC-8 flew at or above 5 km
- AOT compared with AERONET level 2.0 AOT within 15 km, 30 min
- DIAL/HSRL AOT slightly lower than AERONET, possibly due to AOT not included above (> 5 km) or below (<150 m) profile

AERONET data – thanks to Brent Holben, Rick Wagener, Joe Shaw, Kevin Repasky, Kevin Knupp, Doug Moore

Comparison of Boundary Layer Heights from HSRL-2 and GEOS-5 during DISCOVER-AQ

Occurre 150

100 g

Bisector Slope = 0.984 +/- 0.00513 Bisector Intercept = 538 +/- 5,79

heights from

2000

- HSRL-2 boundary layer heights from aerosol backscatter gradients
- GEOS-5 boundary layer heights from thermal diffusivity and aerosol backscatter gradients were about 450-500 m higher than those derived from HSRL-2 and DIAL/HSRL

NASA LaRC airborne HSRL systems have acquired extensive datasets over North America

- HSRL-1, HSRL-2, DIAL/HSRL have acquired science data on more than 450 flights (1500 hours) since 2006
- Data from three missions (DOE TCAP, NASA DISCOVER-AQ, NASA SEAC4RS)

